Professional Electives: Computational & Data Science Stream DATA SCIENCE

[As per Choice Based Credit System (CBCS) scheme]									
SEMESTER – III									
Course Code : 23CSE5107	Credits : 04								
Hours / Week : 03 Hours	Total Hours : 39 (T) +26(P) Hrs								
L-T-P-J : 3-0-2-0									
Course Learning Objectives:									
This Course will enable students to:									
 Apply processes suitable to data prepr extract insights. 	rocessing and transformation to be able to prepare data	i to							
 Visualize data by computing and displ and by modelling exploratory data analy 	lay graphs and plots to identify relationships and patte	rns							
3 Utilize mathematical and statistical tech	hniques to test hypothesis								
4. Employ central limit theorem and on the phenomena and make accurate predict	confidence interval enabling them to model real-wo	orld							
 Use open-source tools to engage in statements and work to identify solution 	practical application of the data to formulate problems	em							
Teaching-Learning Process (General Instruct	tions)								
These are sample new pedagogical methods	where teacher can use to accelerate the attainment of	the							
various course outcomes									
1. Lecture method means it includes not on methods may be adopted to develop the	only traditional lecture method, but different <i>type of teach</i>	ning							
2 Interactive Teaching: Adopt the Activ	<i>re learning</i> that includes brainstorming discussing arc	ดมด							
work, focused listening, formulating ques	stions, notetaking, annotating, and roleplaving,	Jup							
3. Show <i>Video/animation</i> films to explain	functioning of various concepts.								
4. Encourage Collaborative (Group Learn	ing) Learning in the class.								
5. To make Critical thinking, ask at least	three Higher order Thinking questions in the class.								
6. Adopt Problem Based Learning, which	h fosters students' Analytical skills, develop thinking sk	cills							
such as the ability to evaluate, generalize, and analyse information rather than simply recall it.									
7. Show the <i>different ways to solve</i> the s	ame problem and encourage the students to come up v	vith							
their own creative ways to solve them.									
 Discuss how every concept can be app improve the students' understanding. 	plied to the real world - and when that's possible, it he	lps							
UNIT – I: About Data	09 Hours								
Introduction, Causality and Experiments - [Data Pre-processing: Knowing data, Data cleaning, D	ata							
UNIT – II: Data Visualization	09 Hours								
Visualization and Granhing: Visualizing Cate	agorical Distributions Visualizing Numerical Distribution	ns							
Overlaid Graphs plots and summary statistics	of Exploratory Data Analysis (EDA) Exploring Univari	ate							
Data - Histograms -Stem-and-Leaf Quantile Ba	ased Plots - Continuous Distributions -Quantile Plots -	ດິດ							
Plot- Box Plots.									
UNIT – III: Statistics	06 Hours								
Introduction to Statistics- Sampling, Sample N	Means and Sample variance sample moments, covarian	ce.							
correlation, Sampling Distributions - Parameter E	Estimation Bias - Mean Squared Error - Relative Efficienc	;y _							
Standard Error - Maximum Likelihood Estimati	ion. Empirical Distributions- Sampling from a Populati	on-							
Empirical Distribution of a Statistic -Testing H	ypotheses Error probabilities- Assessing Models-Multi	ple							
Categories -Decisions and Uncertainty- Comparing Two Samples -A/B Testing - ANOVA.									
UNIT – IV: Sampling theory	07 Hours								
Estimation- Percentiles- The Bootstrap - Confide	nce Intervals- Using Confidence Intervals - The SD and	the							
Normal Curve - The Central Limit Theorem - p	point and interval estimation, Prediction- Correlation -7	The							
Regression Line -The Method of Least Squares	- Least Squares								

UNIT – V: Case studies on using computational tools for data analytics08 HoursCase studies on Visualization with the help of Tools like Altair Tableau, Rapid miner, and MATLAB. [Access
to open-source tools will be granted for practical application to work on cases studies]08 Hours

Course Outcome	Description	Bloom's Taxonomy Level					
At the end of the course the student will be able to:							
1	Apply their knowledge of data preprocessing and transformation to be able to prepare data to extract insights.	L3					
2	Visualize data by creating graphs and plots to identify relationships and patterns and by modelling exploratory data analytics.	L3					
3	Utilize mathematical and statistical techniques to test hypothesis and to identify covariance with A/B testing and Analysis of Variance.	L3					
4	Employ central limit theorem and confidence interval enabling them to model real-world phenomena and make accurate predictions.	L2 & L3					
5	Use open-source tools to engage in practical application of the data to formulate problem statements and work to identify solutions and to build models.	L4					

Table: Mapping Levels of COs to POs / PSOs														
COs	Program Outcomes (POs)										PSOs			
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	3	2	2	1					1					
CO2	3	2	2						1					
CO3	3	2	2	2					1					
CO4	3	2	2	2					1					
CO5	3	3	2	1	2				1				2	
3: Substantial (High) 2: Moderate (Medium) 1: Poor (L							ow)							

TEXT BOOKS:

- 1. Adi Adhikari and John De Nero, "Computational and Inferential Thinking: The Foundations of Data Science", 1st edition, 2019.
- 2. Jiawei Han, Micheline Kamber, Jian Pei, "Data Mining Concepts and Techniques", 4th Edition, Elsevier, 2006.
- 3. Douglas C. Montgomery, George C. Runger, "Applied Statistics and Probability for Engineers", 6th Edition, Wiley, 2013.

REFERENCE BOOKS:

1. Wendy L. Martinez, Angel R. Martinez, "Computational Statistics Handbook with MATLAB", 2nd Edition, Chapman Hall/CRC, 2008.

E-Resources:

- 1. Data Science for Engineers, IIT Madras- https://nptel.ac.in/courses/106106179
- 2. https://ifacet.iitk.ac.in/professional-certificate-course-in-data-science/
- 3. https://online.stat.psu.edu/stat506/lesson/1/1.4
- 4. https://onlinestatbook.com/2/advanced_graphs/q-q_plots.html
